Quantitative ultrastructure of Ia boutons in the ventral horn: scaling and positional relationships.
نویسندگان
چکیده
Three physiologically characterized spindle (group Ia) afferents were labeled by the intracellular injection of HRP and were processed for light-level reconstruction. Thirty-five boutons in the ventral horn were then selected for analysis. They were serially thin sectioned and characterized in terms of volume, total surface area and the surface area of apposition to postsynaptic neurons (apposed surface area), mitochondrial volume, vesicle and active zone features, relation to presynaptic contacts, postsynaptic profile size, and position within the terminal arbor. Virtually all of these characteristics were widely variable, both within the entire population and in the endings of a single fiber. Apposed surface area, mitochondrial volume, vesicle number, active zone vesicle number, active zone number, and total active zone area were highly correlated in a positive linear manner with bouton volume. This suggests a type of ultrastructural "size principle," in which the morphological features associated with synaptic release scale directly in proportion to bouton size. This pattern also extends to local circuit interactions: the extent of an Ia bouton's input from axoaxonal contacts (86% receive at least one axoaxonal contact) was directly proportional to its size. In addition, the characteristics of an Ia bouton were related to its position on the postsynaptic element and within the terminal arbor. Vesicle density, percentage mitochondrial volume, and active zone size increased as the postsynaptic process decreased in size, while volume, apposed surface area, active zone number and area, and vesicle number all decreased as one moved downstream within a terminal branch, with the exception of the terminal bouton. Vesicle density also decreased as one moved away from the dorsal root entry zone.
منابع مشابه
P boutons in lamina IX of the rodent spinal cord express high levels of glutamic acid decarboxylase-65 and originate from cells in deep medial dorsal horn.
Presynaptic inhibition of primary muscle spindle (group Ia) afferent terminals in motor nuclei of the spinal cord plays an important role in regulating motor output and is produced by a population of GABAergic axon terminals known as P boutons. Despite extensive investigation, the cells that mediate this control have not yet been identified. In this work, we use immunocytochemistry with confoca...
متن کاملThe Expression implication of GDNF in ventral horn and associated remote cortex in rhesus monkeys with hemisected spinal cord injury
Objective(s): Glial cell line-derived neurotrophic factor (GDNF) can effectively promote axonal regeneration,limit axonal retraction,and produce a statistically significant improvement in motor recovery after spinal cord injury (SCI). However, the role in primate animals with SCI is not fully cognized. Materials and Methods:18 healthy juvenile rhesuses were divided randomly into six groups, obs...
متن کاملStudy of the Effects of Horsetail Stem Extract Administration on the Numerical Density of Alpha Motoneurons in the Ventral Horn of Lumbar Spinal Cord of Compressed Sciatic Nerve of Rat
Purpose: The goal of this research was to study of the protective effects horse tail (HT) plant extract on the central degeneration of alpha motoneurons (AM) of spinal cord.Materials and Methods: The lesioned sciatic rats were divided into sham, control and 3 experimental groups and treated by 15 mg/kg, ip HT extract. The animals were care for one month and then were sacrificed and perfused car...
متن کاملTime Course of Axotomy-induced Changes in Synaptophysin Pattern and Synaptic Reaction of Spinal Motoneurons in Adult Rat
Background and Objective: Evaluation of degenerative changes of motoneurons and their related synapses can be useful in understanding the mechanisms of neurodegenerative diseases and their potential treatment. The present electron microscopic and immunohistochemical study investigates the axotomy-induced...
متن کاملNeuroprotective Effects of Aqueous Extract of Achillea Wilhelmsii on Motor Neuron Destruction of Spinal Cord Ventral Horn after Sciatic Nerve Compression in Male Adult Rats
Background & Aims: Peripheral nerve injuries affect both sensory and motor function, resulting in retrograde reaction to neuronal cell bodies in the ventral horn of spinal cord ventral and their destruction. Achillea wilhelmsii is one of the popular medicinal herbs which grow in dry and semitropical areas worldwide. There are several reports indicating the anti-inflammatory, antispasmodic, anti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 13 11 شماره
صفحات -
تاریخ انتشار 1993